Ultra-low and ultra-broad-band nonlinear acoustic metamaterials
Linear acoustic metamaterials (LAMs) are widely used to manipulate sound; however, it is challenging to obtain bandgaps with a generalized width (ratio of the bandgap width to its start frequency) >1 through linear mechanisms. Here we adopt both theoretical and experimental approaches to describe...
Gespeichert in:
Veröffentlicht in: | Nature communications 2017-11, Vol.8 (1), p.1288-11, Article 1288 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Linear acoustic metamaterials (LAMs) are widely used to manipulate sound; however, it is challenging to obtain bandgaps with a generalized width (ratio of the bandgap width to its start frequency) >1 through linear mechanisms. Here we adopt both theoretical and experimental approaches to describe the nonlinear chaotic mechanism in both one-dimensional (1D) and two-dimensional (2D) nonlinear acoustic metamaterials (NAMs). This mechanism enables NAMs to reduce wave transmissions by as much as 20–40 dB in an ultra-low and ultra-broad band that consists of bandgaps and chaotic bands. With subwavelength cells, the generalized width reaches 21 in a 1D NAM and it goes up to 39 in a 2D NAM, which overcomes the bandwidth limit for wave suppression in current LAMs. This work enables further progress in elucidating the dynamics of NAMs and opens new avenues in double-ultra acoustic manipulation.
Linear acoustic metamaterials based on resonances are generally tunable but limited by their narrow bands. Here, Fang et al. fabricate one- and two-dimensional nonlinear acoustic metamaterials with a broadband, low-frequency, response—greatly suppressing low frequency noise. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-017-00671-9 |