On the Admissibility of Simultaneous Bootstrap Confidence Intervals
Simultaneous confidence intervals are commonly used in joint inference of multiple parameters. When the underlying joint distribution of the estimates is unknown, nonparametric methods can be applied to provide distribution-free simultaneous confidence intervals. In this note, we propose new one-sid...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021-07, Vol.13 (7), p.1212 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simultaneous confidence intervals are commonly used in joint inference of multiple parameters. When the underlying joint distribution of the estimates is unknown, nonparametric methods can be applied to provide distribution-free simultaneous confidence intervals. In this note, we propose new one-sided and two-sided nonparametric simultaneous confidence intervals based on the percentile bootstrap approach. The admissibility of the proposed intervals is established. The numerical results demonstrate that the proposed confidence intervals maintain the correct coverage probability for both normal and non-normal distributions. For smoothed bootstrap estimates, we extend Efron’s (2014) nonparametric delta method to construct nonparametric simultaneous confidence intervals. The methods are applied to construct simultaneous confidence intervals for LASSO regression estimates. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13071212 |