Reinforcement Learning Based Trajectory Planning for Multi-UAV Load Transportation

This study introduces a novel trajectory planning approach for the transportation of cable-suspended loads employing three quadrotors, relying on a reinforcement learning (RL) algorithm. The primary objective of this path planning method is to transport the cargo smoothly while avoiding its swing. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.144009-144016
Hauptverfasser: Estevez, Julian, Manuel Lopez-Guede, Jose, del Valle-Echavarri, Javier, Grana, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces a novel trajectory planning approach for the transportation of cable-suspended loads employing three quadrotors, relying on a reinforcement learning (RL) algorithm. The primary objective of this path planning method is to transport the cargo smoothly while avoiding its swing. Within this proposed solution, the value function of the RL is estimated through a feature vector and a parameter vector tailored to the specific problem. The parameter vector undergoes iterative updates via a batch method, subsequently guiding the generation of the desired trajectory through a greedy strategy. Ultimately, this desired trajectory is communicated to the quadrotor controller to ensure precise trajectory tracking. Simulation outcomes demonstrate the capability of the trained parameters to effectively fit the value function.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3470509