Green’s Symmetries in Finite Digraphs
The semigroup DV of digraphs on a set V of n labeled vertices is defined. It is shown that DV is faithfully represented by the semigroup Bn of n ´ n Boolean matrices and that the Green’s L, R, H, and D equivalence classifications of digraphs in DV follow directly from the Green’s classifications alr...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2011-09, Vol.3 (3), p.564-573 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The semigroup DV of digraphs on a set V of n labeled vertices is defined. It is shown that DV is faithfully represented by the semigroup Bn of n ´ n Boolean matrices and that the Green’s L, R, H, and D equivalence classifications of digraphs in DV follow directly from the Green’s classifications already established for Bn. The new results found from this are: (i) L, R, and H equivalent digraphs contain sets of vertices with identical neighborhoods which remain invariant under certain one-sided semigroup multiplications that transform one digraph into another within the same equivalence class, i.e., these digraphs exhibit Green’s isoneighborhood symmetries; and (ii) D equivalent digraphs are characterized by isomorphic inclusion lattices that are generated by their out-neighborhoods and which are preserved under certain two-sided semigroup multiplications that transform digraphs within the same D equivalence class, i.e., these digraphs are characterized by Green’s isolattice symmetries. As a simple illustrative example, the Green’s classification of all digraphs on two vertices is presented and the associated Green’s symmetries are identified. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym3030564 |