Clusterização de precedentes de IRPJ no CARF
The objective of this study was to cluster judgments of the Administrative Council of Tax Appeals (CARF) related to corporate income tax (IRPJ) rendered between 2016 and 2020, employing machine learning (ML) techniques for the clustering of textual documents. The analysis resulted in 13 unique clust...
Gespeichert in:
Veröffentlicht in: | Revista de contabilidade e organizações 2023-06, Vol.17, p.e197181 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to cluster judgments of the Administrative Council of Tax Appeals (CARF) related to corporate income tax (IRPJ) rendered between 2016 and 2020, employing machine learning (ML) techniques for the clustering of textual documents. The analysis resulted in 13 unique clusters, an unprecedented finding in the tax accounting literature in Brazil. This identification is relevant for the CARF, taxpayers, tax administration, and accounting and tax professionals involved in accounting and tax issues related to the IRPJ. The ML algorithms used proved efficient in solving complex natural language processing (NLP) problems, such as creating vector representations of terms and identifying themes in unstructured data, providing valuable contributions to understanding controversial IRPJ issues in light of administrative case law. The clustering of precedents translates into greater accessibility and analysis of patterns in judgments, facilitating decision-making in tax accounting.
O objetivo deste estudo foi agrupar acórdãos do Conselho Administrativo de Recursos Fiscais (CARF) relacionados ao Imposto de Renda Pessoa Jurídica (IRPJ), prolatados entre 2016 e 2020, empregando técnicas de aprendizado de máquina (ML) para a clusterização de documentos textuais. A análise resultou em 13 clusters exclusivos, um achado inédito na literatura contábil tributária no Brasil. Essa identificação é relevante para o CARF, contribuintes, administração tributária e profissionais contábeis e tributaristas envolvidos em questões contábeis e tributárias relacionadas ao IRPJ. Os algoritmos de ML utilizados mostraram-se eficientes na resolução de problemas complexos de processamento de linguagem natural (PLN), como criar representações vetoriais de termos e identificar temáticas em dados não estruturados, fornecendo contribuições valiosas para o entendimento de matérias controversas no IRPJ à luz da jurisprudência administrativa. A clusterização de precedentes se traduz em maior acessibilidade e análise de padrões nos julgamentos, facilitando a tomada de decisões na contabilidade tributária. |
---|---|
ISSN: | 1982-6486 1982-6486 |
DOI: | 10.11606/issn.1982-6486.rco.2023.197181 |