Semiclassical spin transport in LaO/STO system in the presence of multiple Rashba spin-orbit couplings

The interaction between linear and cubic spin–orbit couplings with magnetic moments and mobile spin-polarized carriers in the LaAlO 3 /SrTiO 3 (LaO/STO) system provides new avenues for spin transport applications. We study the interplay between linear and cubic Rashba spin orbit coupling (RSOC) on i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2022-12, Vol.24 (12), p.123045
Hauptverfasser: Kundu, Anirban, Siu, Zhuo Bin, Jalil, Mansoor B A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between linear and cubic spin–orbit couplings with magnetic moments and mobile spin-polarized carriers in the LaAlO 3 /SrTiO 3 (LaO/STO) system provides new avenues for spin transport applications. We study the interplay between linear and cubic Rashba spin orbit coupling (RSOC) on in-plane magnetic moments in the LaO/STO system using the Boltzmann transport theory based on the relaxation time approximation (RTA) and the more refined Schliemann-Loss (SL) delta-potential scattering model. In general, both methods yield a linear (quadratic) relationship in the spin accumulation (spin current) when one of the three RSOC strengths is varied and the other two fixed. The simultaneous presence of multiple types of RSOC with distinct angular dependencies facilitates the breaking of the k -space symmetry of the Fermi surface, thus ensuring a finite spin accumulation upon integration over the entire Fermi surface. While the oft-used RTA method is sufficiently accurate for spin accumulation calculations, the more refined SL model is required for spin current calculations because the RTA method neglects the anisotropy of the Fermi contour arising from the cubic RSOC terms. Based on the refined SL model and under optimal tuning of the RSOC parameters, the spin charge conversion in LaO/STO is predicted to reach a remarkable efficiency of 30%.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/acacbe