Mutation, selection, and the prevalence of the Caenorhabditis elegans heat-sensitive mortal germline phenotype
Caenorhabditis elegans strains with the heat-sensitive mortal germline phenotype become progressively sterile over the course of a few tens of generations when maintained at temperatures near the upper range of C. elegans’ tolerance. Mortal germline is transgenerationally heritable, and proximately...
Gespeichert in:
Veröffentlicht in: | G3 : genes - genomes - genetics 2022-05, Vol.12 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Caenorhabditis elegans strains with the heat-sensitive mortal germline phenotype become progressively sterile over the course of a few tens of generations when maintained at temperatures near the upper range of C. elegans’ tolerance. Mortal germline is transgenerationally heritable, and proximately under epigenetic control. Previous studies have suggested that mortal germline presents a relatively large mutational target and that mortal germline is not uncommon in natural populations of C. elegans. The mortal germline phenotype is not monolithic. Some strains exhibit a strong mortal germline phenotype, in which individuals invariably become sterile over a few generations, whereas other strains show a weaker (less penetrant) phenotype in which the onset of sterility is slower and more stochastic. We present results in which we (1) quantify the rate of mutation to the mortal germline phenotype and (2) quantify the frequency of mortal germline in a collection of 95 wild isolates. Over the course of ∼16,000 meioses, we detected one mutation to a strong mortal germline phenotype, resulting in a point estimate of the mutation rate UMrt≈ 6×10−5/genome/generation. We detected no mutations to a weak mortal germline phenotype. Six out of 95 wild isolates have a strong mortal germline phenotype, and although quantification of the weak mortal germline phenotype is inexact, the weak mortal germline phenotype is not rare in nature. We estimate a strength of selection against mutations conferring the strong mortal germline phenotype s¯≈0.1%, similar to selection against mutations affecting competitive fitness. The appreciable frequency of weak mortal germline variants in nature combined with the low mutation rate suggests that mortal germline may be maintained by balancing selection. |
---|---|
ISSN: | 2160-1836 2160-1836 |
DOI: | 10.1093/g3journal/jkac063 |