Zero-divisor graphs of reduced Rickart -rings

For a ring with an involution *, the of , Γ*( ), is the graph whose vertices are the nonzero left zero-divisors in such that distinct vertices and are adjacent if and only if * = 0. In this paper, we study the zero-divisor graph of a Rickart *-ring having no nonzero nilpotent element. The distance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones mathematicae. General algebra and applications 2017-06, Vol.37 (1), p.31-43
Hauptverfasser: Patil, A.A., Waphare, B.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a ring with an involution *, the of , Γ*( ), is the graph whose vertices are the nonzero left zero-divisors in such that distinct vertices and are adjacent if and only if * = 0. In this paper, we study the zero-divisor graph of a Rickart *-ring having no nonzero nilpotent element. The distance, diameter, and cycles of Γ*( ) are characterized in terms of the collection of prime strict ideals of . In fact, we prove that the clique number of Γ*( ) coincides with the cellularity of the hullkernel topological space Σ( ) of the set of prime strict ideals of , where cellularity of the topological space is the smallest cardinal number such that every family of pairwise disjoint non-empty open subsets of the space have cardinality at most
ISSN:2084-0373
DOI:10.7151/dmgaa.1265