High-Performance Temperature Sensor by Employing Screen Printing Technology

In the present study, a high-performance n-type temperature sensor was developed by a new and facile synthesis approach, which could apply to ambient temperature applications. As impacted by the low sintering temperature of flexible polyimide substrates, a screen printing technology-based method to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-08, Vol.12 (8), p.924
Hauptverfasser: Liu, Zhaojun, Tian, Bian, Zhang, Bingfei, Zhang, Zhongkai, Liu, Jiangjiang, Zhao, Libo, Shi, Peng, Lin, Qijing, Jiang, Zhuangde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, a high-performance n-type temperature sensor was developed by a new and facile synthesis approach, which could apply to ambient temperature applications. As impacted by the low sintering temperature of flexible polyimide substrates, a screen printing technology-based method to prepare thermoelectric materials and a low-temperature heat treatment process applying to polymer substrates were proposed and achieved. By regulating the preparation parameters of the high-performance n-type indium oxide material, the optimal proportioning method and the post-treatment process method were developed. The sensors based on thermoelectric effects exhibited a sensitivity of 162.5 μV/°C, as well as a wide range of temperature measurement from ambient temperature to 223.6 °C. Furthermore, it is expected to conduct temperature monitoring in different scenarios through a sensor prepared in masks and mechanical hands, laying a foundation for the large-scale manufacturing and widespread application of flexible electronic skin and devices.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12080924