Bifurcation analysis of a food chain chemostat model with Michaelis-Menten functional response and double delays

In this paper, we study a food chain chemostat model with Michaelis-Menten function response and double delays. Applying the stability theory of functional differential equations, we discuss the conditions for the stability of three equilibria, respectively. Furthermore, we analyze the sufficient co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2022-01, Vol.7 (7), p.12154-12176
Hauptverfasser: Xu, Xin, Qiu, Yanhong, Chen, Xingzhi, Zhang, Hailan, Liang, Zhiyuan, Tian, Baodan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a food chain chemostat model with Michaelis-Menten function response and double delays. Applying the stability theory of functional differential equations, we discuss the conditions for the stability of three equilibria, respectively. Furthermore, we analyze the sufficient conditions for the Hopf bifurcation of the system at the positive equilibrium. Finally, we present some numerical examples to verify the correctness of the theoretical analysis and give some valuable conclusions and further discussions at the end of the paper.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022676