Bifurcation analysis of a food chain chemostat model with Michaelis-Menten functional response and double delays
In this paper, we study a food chain chemostat model with Michaelis-Menten function response and double delays. Applying the stability theory of functional differential equations, we discuss the conditions for the stability of three equilibria, respectively. Furthermore, we analyze the sufficient co...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2022-01, Vol.7 (7), p.12154-12176 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a food chain chemostat model with Michaelis-Menten function response and double delays. Applying the stability theory of functional differential equations, we discuss the conditions for the stability of three equilibria, respectively. Furthermore, we analyze the sufficient conditions for the Hopf bifurcation of the system at the positive equilibrium. Finally, we present some numerical examples to verify the correctness of the theoretical analysis and give some valuable conclusions and further discussions at the end of the paper. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022676 |