Research on automatic proofreading of Chinese text based on Transformer model

This paper proposes to apply Transformer model in the field of Chinese text automatic proofreading. Transformer model is different from traditional Seq2Seq model based on probability, statistics, rules or BiLSTM. This deep learning model improves the overall structure of Seq2Seq model to achieve aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diànzǐ jìshù yīngyòng 2020-01, Vol.46 (1), p.30-33
Hauptverfasser: Gong Yonggang, Pei Chenchen, Lian Xiaoqin, Wang Jiaxin
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes to apply Transformer model in the field of Chinese text automatic proofreading. Transformer model is different from traditional Seq2Seq model based on probability, statistics, rules or BiLSTM. This deep learning model improves the overall structure of Seq2Seq model to achieve automatic proofreading of Chinese text. By comparing different models with public data sets and using accuracy, recall rate and F1 value as evaluation indexes, the experimental results show that Transformer model has greatly improved proofreading performance compared with other models.
ISSN:0258-7998
DOI:10.16157/j.issn.0258-7998.191013