Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads

Some genetic melanocortin-1 receptor (MC1R) variants responsible for human red hair color (RHC-variants) are consequently associated with increased melanoma risk. Although MC1R signaling is critically dependent on its palmitoylation primarily mediated by the ZDHHC13 protein-acyl transferase, whether...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-02, Vol.10 (1), p.877-10, Article 877
Hauptverfasser: Chen, Shuyang, Han, Changpeng, Miao, Xiao, Li, Xin, Yin, Chengqian, Zou, Junrong, Liu, Min, Li, Shanshan, Stawski, Lukasz, Zhu, Bo, Shi, Qiong, Xu, Zhi-Xiang, Li, Chunying, Goding, Colin R., Zhou, Jun, Cui, Rutao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some genetic melanocortin-1 receptor (MC1R) variants responsible for human red hair color (RHC-variants) are consequently associated with increased melanoma risk. Although MC1R signaling is critically dependent on its palmitoylation primarily mediated by the ZDHHC13 protein-acyl transferase, whether increasing MC1R palmitoylation represents a viable therapeutic target to limit melanomagenesis in redheads is unknown. Here we identify a specific and efficient in vivo strategy to induce MC1R palmitoylation for therapeutic benefit. We validate the importance of ZDHHC13 to MC1R signaling in vivo by targeted expression of ZDHHC13 in C57BL/6J-MC1R RHC mice and subsequently inhibit melanomagenesis. By identifying APT2 as the MC1R depalmitoylation enzyme, we are able to demonstrate that administration of the selective APT2 inhibitor ML349 treatment efficiently increases MC1R signaling and represses UVB-induced melanomagenesis in vitro and in vivo. Targeting APT2, therefore, represents a preventive/therapeutic strategy to reduce melanoma risk, especially in individuals with red hair. Melanocortin-1 receptor is a palmitoylated protein and variants of the receptor are associated with red hair colour and susceptibility to melanoma. Here, the authors describe a method to enhance the palmitoylation of the receptor, which can inhibit melanomagenesis in mice.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-08691-3