Immunogenicity of unprocessed and photooxidized bovine and human osteochondral grafts in collagen-sensitive mice

Autologous and allogeneic osteochondral grafts have been used to repair damaged or diseased cartilage. There are drawbacks to both of these methods, however. Another possible source for osteochondral grafting is photooxidized xenograft scaffolds. The purpose of this study was to evaluate the adaptiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC musculoskeletal disorders 2006-03, Vol.7 (1), p.32-32, Article 32
Hauptverfasser: Kawalec-Carroll, Jill S, Hetherington, Vincent J, Dockery, Douglas S, Shive, Carey, Targoni, Oleg S, Lehmann, Paul V, Nadler, Daniel, Prins, Dustin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autologous and allogeneic osteochondral grafts have been used to repair damaged or diseased cartilage. There are drawbacks to both of these methods, however. Another possible source for osteochondral grafting is photooxidized xenograft scaffolds. The purpose of this study was to evaluate the adaptive immune response to unprocessed and photooxidized xenogeneic osteochondral grafts in a collagen-sensitive mouse model. Unprocessed and photooxidized bovine and human osteochondral grafts were used. The grafts were implanted subcutaneously in collagen-sensitive DBA/1LacJ mice for four or twelve weeks. ELISPOT assays were conducted with spleen cells to evaluate the number of collagen-specific T cells that produce IL-2, IL-4, IL-5 or IFN-gamma. Serum was collected and ELISA assays were performed to determine the titers of collagen-specific and total IgG, IgG1, IgG2a, or IgM antibodies. Histology was conducted on the retrieved osteochondral grafts. Results indicated that, with respect to adaptive T cell immunity, the photooxidized bovine grafts, unprocessed human grafts and photooxidized human grafts did not induce a significant response to collagen. The unprocessed bovine grafts, however, were slightly more immunogenic, inducing a weak immune response. With respect to antibody production, the bovine grafts were less immunogenic than the human grafts. Bovine collagen-specific IgG antibodies were not induced by these grafts, but production of IgM after twelve weeks was observed with both the unprocessed and photooxidized bovine grafts. In contrast, photooxidized human osteochondral grafts induced IgG1 and IgG2a antibodies, while the unprocessed human grafts did not. Pre-existing human collagen-specific IgM antibodies were present in all mice, including sham-operated negative controls that did not receive an implant. Histological analysis revealed some degree of fibrous encapsulation and inflammatory infiltrations in both bovine and human implants, whether unprocessed or photooxidized. Both bovine and human cartilage grafts showed weak, but clear immunogenicity in the DBA/1LacJ mice, indicating that immunogenic collagen was still contained in the grafts, even after cleaning and photooxidation. The process of photooxidation is still important in osteochondral grafting, since it stabilizes the surface of the cartilage by cross-linking the collagen fibers, and allows for immediate load bearing and joint resurfacing.
ISSN:1471-2474
1471-2474
DOI:10.1186/1471-2474-7-32