Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement
Rapid urbanization in many cities has produced massive amounts of problematic excavation soil. The direct disposal of untreated excavation soil often leads to significant land use and severe environmental concerns. A sustainable solution is to transform the soil waste into high-quality nano-calcined...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2024-05, Vol.14 (10), p.850 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapid urbanization in many cities has produced massive amounts of problematic excavation soil. The direct disposal of untreated excavation soil often leads to significant land use and severe environmental concerns. A sustainable solution is to transform the soil waste into high-quality nano-calcined excavation soil (NCES) for application as a substitute for cement in construction. However, research in this area is very limited. This study presents a systematic investigation of the nano-sized calcined soil materials from preparation to application in cementitious material. The influence of milling parameters, including the rotational speed, milling duration, ball diameter, and milling strategy, was investigated to produce NCES with various specific surface areas. The effect of NCES substitution (15 wt% of Portland cement) in cementitious materials was then examined for mechanical performance, hydration dynamics, hydration products, and microstructure. A cement mix with very fine NCES (specific surface area of 108.76 m
/g) showed a 29.7% enhancement in mechanical strength and refined pore structure while a cement mix with un-grounded calcined soil showed a mechanical loss in comparison to the Control specimen. Delayed and reduced heat release at an early age was observed in a cement paste mixed with NCES. The underlying mechanism was investigated. The results of this work will contribute to the high-quality application of excavation soil waste. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano14100850 |