Mode-shell correspondence, a unifying phase space theory in topological physics - Part I: Chiral number of zero-modes

We propose a theory, that we call the mode-shell correspondence, which relates the topological zero-modes localised in phase space to a shell invariant defined on the surface forming a shell enclosing these zero-modes. We show that the mode-shell formalism provides a general framework unifying impor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2024-08, Vol.17 (2), p.060
1. Verfasser: Lucien Jezequel, Pierre Delplace
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a theory, that we call the mode-shell correspondence, which relates the topological zero-modes localised in phase space to a shell invariant defined on the surface forming a shell enclosing these zero-modes. We show that the mode-shell formalism provides a general framework unifying important results of topological physics, such as the bulk-edge correspondence, higher-order topological insulators, but also the Atiyah-Singer and the Callias index theories. In this paper, we discuss the already rich phenomenology of chiral symmetric Hamiltonians where the topological quantity is the chiral number of zero-dimensional zero-energy modes. We explain how, in a lot of cases, the shell-invariant has a semi-classical limit expressed as a generalised winding number on the shell, which makes it accessible to analytical computations.
ISSN:2542-4653
DOI:10.21468/SciPostPhys.17.2.060