Mode-shell correspondence, a unifying phase space theory in topological physics - Part I: Chiral number of zero-modes
We propose a theory, that we call the mode-shell correspondence, which relates the topological zero-modes localised in phase space to a shell invariant defined on the surface forming a shell enclosing these zero-modes. We show that the mode-shell formalism provides a general framework unifying impor...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2024-08, Vol.17 (2), p.060 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a theory, that we call the mode-shell correspondence, which relates the topological zero-modes localised in phase space to a shell invariant defined on the surface forming a shell enclosing these zero-modes. We show that the mode-shell formalism provides a general framework unifying important results of topological physics, such as the bulk-edge correspondence, higher-order topological insulators, but also the Atiyah-Singer and the Callias index theories. In this paper, we discuss the already rich phenomenology of chiral symmetric Hamiltonians where the topological quantity is the chiral number of zero-dimensional zero-energy modes. We explain how, in a lot of cases, the shell-invariant has a semi-classical limit expressed as a generalised winding number on the shell, which makes it accessible to analytical computations. |
---|---|
ISSN: | 2542-4653 |
DOI: | 10.21468/SciPostPhys.17.2.060 |