omega$-Euclidean domain and Laurent series
It is proved that a commutative domain $R$ is $\omega$-Euclidean if and only if the ring of formal Laurent series over $R$ is $\omega$-Euclidean domain. It is also proved that every singular matrice over ring of formal Laurent series $R_{X}$ are products of idempotent matrices if $R$ is $\omega$-Euc...
Gespeichert in:
Veröffentlicht in: | Karpats'kì matematinì publìkacìï 2016-06, Vol.8 (1), p.158-162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that a commutative domain $R$ is $\omega$-Euclidean if and only if the ring of formal Laurent series over $R$ is $\omega$-Euclidean domain. It is also proved that every singular matrice over ring of formal Laurent series $R_{X}$ are products of idempotent matrices if $R$ is $\omega$-Euclidean domain. |
---|---|
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.8.1.158-162 |