Novel Batch Polishing Method of Ceramic Cutting Inserts for Reducing Tool Wear
Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications. However, the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness. In order to improve the tool life and reduce wear, this study...
Gespeichert in:
Veröffentlicht in: | Chinese journal of mechanical engineering 2024-08, Vol.37 (1), p.83-10, Article 83 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications. However, the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness. In order to improve the tool life and reduce wear, this study introduces an emerging method called magnetic field-assisted batch polishing (MABP) for simultaneously polishing multiple ceramic cutting inserts. Several polishing experiments were conducted under different conditions, and the wear characteristics were clarified by cutting S136H steel. The results showed that after 15 min of polishing, the surface roughness at the flank face, edge, and nose of the inserts was reduced to below 2.5 nm, 6.25 nm, and 45.8 nm, respectively. Furthermore, the nose radii of the inserts did not change significantly, and there were no significant changes in the weight percentage of elements before and after polishing. Additionally, the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts. These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts, resulting in significantly reduced tool wear. Furthermore, this novel method offers new possibilities for polishing other tools. |
---|---|
ISSN: | 2192-8258 1000-9345 2192-8258 |
DOI: | 10.1186/s10033-024-01069-7 |