An Improved Greedy Heuristic for the Minimum Positive Influence Dominating Set Problem in Social Networks

This paper presents a performance comparison of greedy heuristics for a recent variant of the dominating set problem known as the minimum positive influence dominating set (MPIDS) problem. This APX-hard combinatorial optimization problem has applications in social networks. Its aim is to identify a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2021, Vol.14 (3), p.79
Hauptverfasser: Bouamama, Salim, Blum, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a performance comparison of greedy heuristics for a recent variant of the dominating set problem known as the minimum positive influence dominating set (MPIDS) problem. This APX-hard combinatorial optimization problem has applications in social networks. Its aim is to identify a small subset of key influential individuals in order to facilitate the spread of positive influence in the whole network. In this paper, we focus on the development of a fast and effective greedy heuristic for the MPIDS problem, because greedy heuristics are an essential component of more sophisticated metaheuristics. Thus, the development of well-working greedy heuristics supports the development of efficient metaheuristics. Extensive experiments conducted on a wide range of social networks and complex networks confirm the overall superiority of our greedy algorithm over its competitors, especially when the problem size becomes large. Moreover, we compare our algorithm with the integer linear programming solver CPLEX. While the performance of CPLEX is very strong for small and medium-sized networks, it reaches its limits when being applied to the largest networks. However, even in the context of small and medium-sized networks, our greedy algorithm is only 2.53% worse than CPLEX.
ISSN:1999-4893
1999-4893
DOI:10.3390/a14030079