In Silico Mass Spectrometric Fragmentation and Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Betalainic Fingerprinting: Identification of Betalains in Red Pitaya

Betalains, which contain nitrogen and are water soluble, are the pigments responsible for many traits of plants and biological activities in different organisms that do not produce them. To better annotate and identify betalains using a spectral library and fingerprint, a database catalog of 140 kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-11, Vol.29 (22), p.5485
Hauptverfasser: Araujo-León, Jesús Alfredo, Sánchez-Del Pino, Ivonne, Brito-Argáez, Ligia Guadalupe, Peraza-Sánchez, Sergio R, Ortiz-Andrade, Rolffy, Aguilar-Hernández, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Betalains, which contain nitrogen and are water soluble, are the pigments responsible for many traits of plants and biological activities in different organisms that do not produce them. To better annotate and identify betalains using a spectral library and fingerprint, a database catalog of 140 known betalains (112 betacyanins and 28 betaxanthins) was made in this work to simplify betalain identification in mass spectrometry analysis. Fragmented peaks obtained using MassFrontier, along with chemical structures and protonated precursor ions for each betalain, were added to the database. Product ions made in MS/MS and multistage MS analyses of betanin, beetroot extract, and red pitaya extract revealed the fingerprint of betalains, distinctive ions of betacyanin, betacyanin derivatives such as decarboxylated and dehydrogenated betacyanins, and betaxanthins. A distinctive ion with / 211.07 was found in betaxanthins. By using the fingerprint of betalains in the analysis of red pitaya extracts, the catalog of betalains in red pitaya was expanded to 86 (31 betacyanins, 36 betacyanin derivatives, and 19 betaxanthins). Four unknown betalains were detected to have the fingerprint of betalains, but further research will aid in revealing the complete structure. Taken together, we envisage that the further use of the fingerprint of betalains will increase the annotation coverage of identified molecules in studies related to revealing the biological function of betalains or making technologies based on these natural colorants.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29225485