Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography

Antireflective (AR) nanostructures offer an effective, broadband alternative to conventional AR coatings that could be used even under extreme conditions. In this publication, a possible fabrication process based on colloidal polystyrene (PS) nanosphere lithography for the fabrication of such AR str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-06, Vol.14 (6), p.1204
Hauptverfasser: Schmelz, David, Jia, Guobin, Käsebier, Thomas, Plentz, Jonathan, Zeitner, Uwe Detlef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antireflective (AR) nanostructures offer an effective, broadband alternative to conventional AR coatings that could be used even under extreme conditions. In this publication, a possible fabrication process based on colloidal polystyrene (PS) nanosphere lithography for the fabrication of such AR structures on arbitrarily shaped fused silica substrates is presented and evaluated. Special emphasis is placed on the involved manufacturing steps in order to be able to produce tailored and effective structures. An improved Langmuir-Blodgett self-assembly lithography technique enabled the deposition of 200 nm PS spheres on curved surfaces, independent of shape or material-specific characteristics such as hydrophobicity. The AR structures were fabricated on planar fused silica wafers and aspherical planoconvex lenses. Broadband AR structures with losses (reflection + transmissive scattering) of
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14061204