Characterizing the Physical Properties and Cell Compatibility of Phytoglycogen Extracted from Different Sweet Corn Varieties
Owing to its unique structure and properties, the glucose dendrimer phytoglycogen is gaining interest for medical and biotechnology applications. Although many maize variants are available from commercial and academic breeding programs, most applications rely on phytoglycogen extracted from the comm...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-02, Vol.25 (3), p.637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to its unique structure and properties, the glucose dendrimer phytoglycogen is gaining interest for medical and biotechnology applications. Although many maize variants are available from commercial and academic breeding programs, most applications rely on phytoglycogen extracted from the common maize variant,
. Here we characterized the solubility, hydrodynamic diameter, water-binding properties, protein contaminant concentration, and cytotoxicity of phytoglycogens from different maize sources, A632
, A619
, Wesu7, and Ia453
, harboring various
mutants. A619
-SW phytoglycogen was cytotoxic while A632
-SW phytoglycogen was not. A632
-Pu phytoglycogen promoted cell growth, whereas extracts from A632
-NE, A632
-NC, and A632
-CM were cytotoxic. Phytoglycogen extracted from Wesu7
-NE using ethanol precipitation was cytotoxic. Acid-treatment improved Wesu7 phytoglycogen cytocompatibility. Protease-treated Wesu7 extracts promoted cell growth. Phytoglycogen extracted from Ia453
21 days after pollination ("Ia435
21DAP") was cytotoxic, whereas phytoglycogen extracted at 40 days ("Ia435
40DAP") was not. In general, size and solubility had no correlation with cytocompatibility, whereas protein contaminant concentration and water-binding properties did. A632
-CM had the highest protein contamination among A632 mutants, consistent with its higher cytotoxicity. Likewise, Ia435
21DAP phytoglycogen had higher protein contamination than Ia435
40DAP. Conversely, protease-treated Wesu7 extracts had lower protein contamination than the other Wesu7 extracts. A632
-NE, A632
-NC, and A632
-CM had similar water-binding properties which differed from those of A632
-Pu and A632
-SW. Likewise, water binding differed between Ia435
21DAP and Ia435
40DAP. Collectively, these data demonstrate that maize phytoglycogen extracts are not uniformly cytocompatible. Rather, maize variant, plant genotype, protein contaminants, and water-binding properties are determinants of phytoglycogen cytotoxicity. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25030637 |