Investigating the Effect of Tyrosine Kinase Inhibitors on the Interaction between Human Serum Albumin by Atomic Force Microscopy

It is important for elucidating the regulation mechanism of life activities, as well as for the prevention, diagnosis, and drug design of diseases, to study protein–protein interactions (PPIs). Here, we investigated the interactions of human serum albumin (HSA) in the presence of tyrosine kinase inh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (6), p.819
Hauptverfasser: Fu, Yuna, Wang, Jianhua, Wang, Yan, Sun, Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important for elucidating the regulation mechanism of life activities, as well as for the prevention, diagnosis, and drug design of diseases, to study protein–protein interactions (PPIs). Here, we investigated the interactions of human serum albumin (HSA) in the presence of tyrosine kinase inhibitors (TKIs: imatinib, nilotinib, dasatinib, bosutinib, and ponatinib) using atomic force microscopy (AFM). The distribution of rupture events including the specific interaction force Fi and the non-specific interaction force F0 between HSA pairs was analyzed. Based on the force measurements, Fi and F0 between HSA pairs in the control experiment were calculated to be 47 ± 1.5 and 116.1 ± 1.3 pN. However, Fi was significantly decreased in TKIs, while F0 was slightly decreased. By measuring the rupture forces at various loading rates and according to the Bell equation, the kinetic parameters of the complexes were investigated in greater detail. Molecular docking was used as a complementary means by which to explore the force of this effect. The whole measurements indicated that TKIs influenced PPIs in a variety of ways, among which hydrogen bonding and hydrophobic interactions were the most important. In conclusion, these outcomes give us a better insight into the mechanisms of PPIs when there are exogenous compounds present as well as in different liquid environments.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom12060819