Prediction for Chaotic Time Series-Based AE-CNN and Transfer Learning

It has been a hot and challenging topic to predict the chaotic time series in the medium-to-long term. We combine autoencoders and convolutional neural networks (AE-CNN) to capture the intrinsic certainty of chaotic time series. We utilize the transfer learning (TL) theory to improve the prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-9
Hauptverfasser: Xin, Baogui, Peng, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been a hot and challenging topic to predict the chaotic time series in the medium-to-long term. We combine autoencoders and convolutional neural networks (AE-CNN) to capture the intrinsic certainty of chaotic time series. We utilize the transfer learning (TL) theory to improve the prediction performance in medium-to-long term. Thus, we develop a prediction scheme for chaotic time series-based AE-CNN and TL named AE-CNN-TL. Our experimental results show that the proposed AE-CNN-TL has much better prediction performance than any one of the following: AE-CNN, ARMA, and LSTM.
ISSN:1076-2787
1099-0526
DOI:10.1155/2020/2680480