Convolutional neural network optimisation to enhance ESPI fringe visibility

The use of convolutional neuronal networks (CNN) for the treatment of interferometric fringes has been introduced in recent years. In this paper, we optimize and build a CNN model, based U-NET architecture, to maximize its performance processing electronic speckle interferometry fringes (ESPI).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2022, Vol.266, p.13007
Hauptverfasser: Crespo, J.M., Moreno, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of convolutional neuronal networks (CNN) for the treatment of interferometric fringes has been introduced in recent years. In this paper, we optimize and build a CNN model, based U-NET architecture, to maximize its performance processing electronic speckle interferometry fringes (ESPI).
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202226613007