Convolutional neural network optimisation to enhance ESPI fringe visibility
The use of convolutional neuronal networks (CNN) for the treatment of interferometric fringes has been introduced in recent years. In this paper, we optimize and build a CNN model, based U-NET architecture, to maximize its performance processing electronic speckle interferometry fringes (ESPI).
Gespeichert in:
Veröffentlicht in: | EPJ Web of conferences 2022, Vol.266, p.13007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of convolutional neuronal networks (CNN) for the treatment of interferometric fringes has been introduced in recent years. In this paper, we optimize and build a CNN model, based U-NET architecture, to maximize its performance processing electronic speckle interferometry fringes (ESPI). |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202226613007 |