Existence and Uniqueness of Solutions to Non-Local Problems of Brézis–Oswald Type and Its Application

The aim of this paper is to establish the existence and uniqueness of solutions to non-local problems involving a discontinuous Kirchhoff-type function via a global minimum principle of Ricceri. More precisely, we first obtain the uniqueness result of weak solutions to nonlinear fractional Laplacian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2024-11, Vol.8 (11), p.622
1. Verfasser: Kim, Yun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to establish the existence and uniqueness of solutions to non-local problems involving a discontinuous Kirchhoff-type function via a global minimum principle of Ricceri. More precisely, we first obtain the uniqueness result of weak solutions to nonlinear fractional Laplacian problems of Brézis–Oswald type. We then demonstrate the existence of a unique positive solution to Kirchhoff-type problems driven by the non-local fractional Laplacian as its application. The main features of the present paper are the lack of the continuity of the Kirchhoff function in [0,∞) and the localization of a positive solution.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract8110622