Convergence of λ-Bernstein operators based on (p, q)-integers
In the present paper, we construct a new class of positive linear λ -Bernstein operators based on ( p , q )-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K -functional and moduli of continuity, and also give a c...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2020-02, Vol.2020 (1), p.1-17, Article 35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we construct a new class of positive linear
λ
-Bernstein operators based on (
p
,
q
)-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of
K
-functional and moduli of continuity, and also give a convergence theorem for the Lipschitz continuous functions. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-020-2309-y |