Convergence of λ-Bernstein operators based on (p, q)-integers

In the present paper, we construct a new class of positive linear λ -Bernstein operators based on ( p , q )-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K -functional and moduli of continuity, and also give a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2020-02, Vol.2020 (1), p.1-17, Article 35
Hauptverfasser: Cai, Qing-Bo, Cheng, Wen-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we construct a new class of positive linear λ -Bernstein operators based on ( p , q )-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K -functional and moduli of continuity, and also give a convergence theorem for the Lipschitz continuous functions.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-020-2309-y