Terminal value problem for singular ordinary differential equations: Theoretical analysis and numerical simulations of ground states

: A singular boundary value problem (BVP) for a second-order nonlinear differential equation is studied. This BVP is a model in hydrodynamics as well as in nonlinear field theory and especially in the study of the symmetric bubble-type solutions (shell-like theory). The obtained solutions (ground st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2006-11, Vol.2006 (1), p.28719-28719
Hauptverfasser: Palamides, Alex P, Yannopoulos, Theodoros G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:: A singular boundary value problem (BVP) for a second-order nonlinear differential equation is studied. This BVP is a model in hydrodynamics as well as in nonlinear field theory and especially in the study of the symmetric bubble-type solutions (shell-like theory). The obtained solutions (ground states) can describe the relationship between surface tension, the surface mass density, and the radius of the spherical interfaces between the fluid phases of the same substance. An interval of the parameter, in which there is a strictly increasing and positive solution defined on the half-line, with certain asymptotic behavior is derived. Some numerical results are given to illustrate and verify our results. Furthermore, a full investigation for all other types of solutions is exhibited. The approach is based on the continuum property (connectedness and compactness) of the solutions funnel (Knesser's theorem), combined with the corresponding vector field's ones.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/1687-2770-2006-28719