Crystal Structures of the 43 kDa ATPase Domain of Xanthomonas Oryzae pv. Oryzae Topoisomerase IV ParE Subunit and its Complex with Novobiocin

Topoisomerase IV, one of the best-established antibacterial targets, is an enzyme crucial for chromosome segregation and cell division by catalyzing changes in DNA topology through breaking and rejoining DNA. This enzyme functions as a heterotetramer consisting of two ParC and two ParE subunits. Ami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2019-11, Vol.9 (11), p.577
Hauptverfasser: Jung, Ha Yun, Heo, Yong-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topoisomerase IV, one of the best-established antibacterial targets, is an enzyme crucial for chromosome segregation and cell division by catalyzing changes in DNA topology through breaking and rejoining DNA. This enzyme functions as a heterotetramer consisting of two ParC and two ParE subunits. Aminocoumarin class inhibitors target the ParE subunit, while widely used quinolones target the ParC subunit. Here, we determined the crystal structure of the ParE 43 kDa ATPase domain from Xanthomonas oryzae pv. oryzae. Size exclusion chromatography showed that the ParE ATPase domain exists as a monomer in solution, while it dimerizes when ATP is added. Structural comparison with the structure of Escherichia coli ParE in complex with an ATP analogue showed large conformational change of the subdomains within the protein. We also determined the structure of the ParE ATPase domain in complex with novobiocin, a natural product aminocoumarin class inhibitor, revealing its binding mode and the structural change within the ATP-binding site induced by novobiocin binding. These results could provide a basis for the design of more potent topoisomerase IV inhibitors with improved antibacterial activity.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst9110577