Transforming Arithmetic Asian Option PDE to the Parabolic Equation with Constant Coefficients

Arithmetic Asian options are difficult to price and hedge, since at present, there is no closed-form analytical solution to price them. Transforming the PDE of the arithmetic the Asian option to a heat equation with constant coefficients is found to be difficult or impossible. Also, the numerical so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2011, Vol.2011 (2011), p.575-580-049
Hauptverfasser: Zakaria, Roza Hazli, Jaaman, Saiful Hafiza, Ahmad, Rokiah Rozita, Elshegmani, Zieneb Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arithmetic Asian options are difficult to price and hedge, since at present, there is no closed-form analytical solution to price them. Transforming the PDE of the arithmetic the Asian option to a heat equation with constant coefficients is found to be difficult or impossible. Also, the numerical solution of the arithmetic Asian option PDE is not very accurate since the Asian option has low volatility level. In this paper, we analyze the value of the arithmetic Asian option with a new approach using means of partial differential equations (PDEs), and we transform the PDE to a parabolic equation with constant coefficients. It has been shown previously that the PDE of the arithmetic Asian option cannot be transformed to a heat equation with constant coefficients. We, however, approach the problem and obtain the analytical solution of the arithmetic Asian option PDE.
ISSN:0161-1712
1687-0425
DOI:10.1155/2011/401547