Pfaffian invariant identifies magnetic obstructed atomic insulators
We derive a \mathbb{Z}_4 ℤ 4 topological invariant that extends beyond symmetry eigenvalues and Wilson loops and classifies two-dimensional insulators with a C_4 \mathcal{T} C 4 symmetry. To formulate this invariant, we consider an irreducible Brillouin zone and constrain the spectrum of the open Wi...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2023-09, Vol.15 (3), p.114, Article 114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a
\mathbb{Z}_4
ℤ
4
topological invariant that extends beyond symmetry eigenvalues and
Wilson loops and classifies two-dimensional insulators with a
C_4 \mathcal{T}
C
4
symmetry. To formulate this invariant, we consider an irreducible
Brillouin zone and constrain the spectrum of the open Wilson lines that
compose its boundary. We fix the gauge ambiguity of the Wilson lines by
using the Pfaffian at high symmetry momenta. As a result, we distinguish
the four
C_4 \mathcal{T}
C
4
-protected
atomic insulators, each of which is adiabatically connected to a
different atomic limit. We establish the correspondence between the
invariant and the obstructed phases by constructing both the atomic
limit Hamiltonians and a
C_4 \mathcal{T}
C
4
-symmetric
model that interpolates between them. The phase diagram shows that
C_4 \mathcal{T}
C
4
insulators allow
\pm 1
±
1
and
2
2
changes of the invariant, where the latter is overlooked by symmetry
indicators. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.15.3.114 |