A Soft-YoloV4 for High-Performance Head Detection and Counting
Blockage of pedestrians will cause inaccurate people counting, and people’s heads are easily blocked by each other in crowded occasions. To reduce missed detections as much as possible and improve the capability of the detection model, this paper proposes a new people counting method, named Soft-Yol...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-12, Vol.9 (23), p.3096 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blockage of pedestrians will cause inaccurate people counting, and people’s heads are easily blocked by each other in crowded occasions. To reduce missed detections as much as possible and improve the capability of the detection model, this paper proposes a new people counting method, named Soft-YoloV4, by attenuating the score of adjacent detection frames to prevent the occurrence of missed detection. The proposed Soft-YoloV4 improves the accuracy of people counting and reduces the incorrect elimination of the detection frames when heads are blocked by each other. Compared with the state-of-the-art YoloV4, the AP value of the proposed head detection method is increased from 88.52 to 90.54%. The Soft-YoloV4 model has much higher robustness and a lower missed detection rate for head detection, and therefore it dramatically improves the accuracy of people counting. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9233096 |