Threat-Oriented Collaborative Path Planning of Unmanned Reconnaissance Mission for the Target Group

Unmanned aerial vehicle (UAV) cluster combat is a typical example of an intelligent cluster application, and it is characterized by its large scale, low cost, retrievability, and intra-cluster autonomous coordination. An unmanned reconnaissance mission for a target group (URMFTG) is a significant pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2022-10, Vol.9 (10), p.577
Hauptverfasser: Chen, Qihong, Zhao, Qingsong, Zou, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmanned aerial vehicle (UAV) cluster combat is a typical example of an intelligent cluster application, and it is characterized by its large scale, low cost, retrievability, and intra-cluster autonomous coordination. An unmanned reconnaissance mission for a target group (URMFTG) is a significant pattern in UAV cluster combat. This paper discusses the collaborative path planning problem of unmanned aerial vehicle formations (UAVFs) and refueling tankers in a URMFTG with threat areas and fuel constraints. The purpose of collaborative path planning is to ensure that the UAVFs (with fuel constraints) can complete the reconnaissance mission for the target group with the assistance of refueling tankers, which is one of the most important constraints in the collaborative path planning. In this paper, a collaborative path-planning model is designed to analyze the relationship between the planning path of the UAVFs and the tankers, and a threat avoidance strategy is designed considering the threat area. This paper proposes a two-stage solution algorithm. It creates a UAVFs path-planning algorithm based on the fast search genetic algorithm (FSGA) and a refueling tanker path-planning algorithm based on the improved non-dominated sorting genetic algorithm II (NSGA-II). Based on simulation experiments, the solution method proposed in this paper can provide a better path-planning scheme for a URMFTG. That is, it decreases the rate of the UAVF’s distance growth from 3.1% to 2.2% for the path planning of UAVFs and provides a better Pareto solution set for the path planning of refueling tankers.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace9100577