Stabilization mechanism for many-body localization in two dimensions

Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d=1) and two-dimensional (d=2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for d>1. Underpinning the thermal avalanche argument is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2023-07, Vol.5 (3), p.L032011, Article L032011
Hauptverfasser: Foo, D. C. W., Swain, N., Sengupta, P., Lemarié, G., Adam, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d=1) and two-dimensional (d=2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for d>1. Underpinning the thermal avalanche argument is the assumption of exponential localization of local integrals of motion (LIOM). In this Letter we demonstrate that the addition of a confining potential—as is typical in experimental setups—allows a noninteracting disordered system to have superexponentially (Gaussian) localized wave functions, and an interacting disordered system to undergo a localization transition. Moreover, we show that Gaussian localization of MBL LIOM shifts the quantum avalanche critical dimension from d=1 to d=2, potentially bridging the divide between the experimental demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations are impossible.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.5.L032011