Stabilization mechanism for many-body localization in two dimensions
Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d=1) and two-dimensional (d=2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for d>1. Underpinning the thermal avalanche argument is...
Gespeichert in:
Veröffentlicht in: | Physical review research 2023-07, Vol.5 (3), p.L032011, Article L032011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d=1) and two-dimensional (d=2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for d>1. Underpinning the thermal avalanche argument is the assumption of exponential localization of local integrals of motion (LIOM). In this Letter we demonstrate that the addition of a confining potential—as is typical in experimental setups—allows a noninteracting disordered system to have superexponentially (Gaussian) localized wave functions, and an interacting disordered system to undergo a localization transition. Moreover, we show that Gaussian localization of MBL LIOM shifts the quantum avalanche critical dimension from d=1 to d=2, potentially bridging the divide between the experimental demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations are impossible. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.5.L032011 |