Linear generalized derivations on Banach $ ^ $-algebras

This paper deals with some identities on Banach $ ^* $-algebras that are equipped with linear generalized derivations. As an application of one of our results, we describe the structure of the underlying algebras. Precisely, we prove that for a linear generalized derivation $ F $ on a Banach $ ^* $-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2024-01, Vol.9 (10), p.27497-27511
Hauptverfasser: Ali, Shakir, Hummdi, Ali Yahya, Ayedh, Mohammed, Rafiquee, Naira Noor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with some identities on Banach $ ^* $-algebras that are equipped with linear generalized derivations. As an application of one of our results, we describe the structure of the underlying algebras. Precisely, we prove that for a linear generalized derivation $ F $ on a Banach $ ^* $-algebra $ A $, either we obtain the existence of a central idempotent element $ e\in Q $, for which $ F = 0 $ on $ eQ $ and $ (1-e)Q $ satisfies $ s_{4} $, or the set of elements $ u\in A $ such that the identity $ [F(u)^n, F(u^*)^nF(u)^n]\in Z(A) $ holds for no positive integer $ n $ turns out to be dense. In addition to this we consider an identity satisfied by a semisimple Banach $ ^* $-algebra and look for its commutativity. Moreover, some related results are also established.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20241335