Multi-Objective Swarm Intelligence Trajectory Generation for a 7 Degree of Freedom Robotic Manipulator

This work is aimed to demonstrate a multi-objective joint trajectory generation algorithm for a 7 degree of freedom (DoF) robotic manipulator using swarm intelligence (SI)—product of exponentials (PoE) combination. Given a priori knowledge of the end-effector Cartesian trajectory and obstacles in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics (Basel) 2021-12, Vol.10 (4), p.127
Hauptverfasser: Malik, Aryslan, Henderson, Troy, Prazenica, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is aimed to demonstrate a multi-objective joint trajectory generation algorithm for a 7 degree of freedom (DoF) robotic manipulator using swarm intelligence (SI)—product of exponentials (PoE) combination. Given a priori knowledge of the end-effector Cartesian trajectory and obstacles in the workspace, the inverse kinematics problem is tackled by SI-PoE subject to multiple constraints. The algorithm is designed to satisfy finite jerk constraint on end-effector, avoid obstacles, and minimize control effort while tracking the Cartesian trajectory. The SI-PoE algorithm is compared with conventional inverse kinematics algorithms and standard particle swarm optimization (PSO). The joint trajectories produced by SI-PoE are experimentally tested on Sawyer 7 DoF robotic arm, and the resulting torque trajectories are compared.
ISSN:2218-6581
2218-6581
DOI:10.3390/robotics10040127