Robust Entangled-Photon Ghost Imaging with Compressive Sensing

This work experimentally demonstrates that the imaging quality of quantum ghost imaging (GI) with entangled photons can be significantly improved by properly handling the errors caused by the imperfection of optical devices. We also consider compressive GI to reduce the number of measurements and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-01, Vol.19 (1), p.192
Hauptverfasser: Li, Jun, Gao, Wenyu, Qian, Jiachuan, Guo, Qinghua, Xi, Jiangtao, Ritz, Christian H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work experimentally demonstrates that the imaging quality of quantum ghost imaging (GI) with entangled photons can be significantly improved by properly handling the errors caused by the imperfection of optical devices. We also consider compressive GI to reduce the number of measurements and thereby the data acquisition time. The image reconstruction is formulated as a sparse total least square problem which is solved with an iterative algorithm. Our experiments show that, compared with existing methods, the new method can achieve a significant performance gain in terms of mean square error and peak signal⁻noise ratio.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19010192