Propagation Measurement of a Pedestrian Tunnel at 24 GHz for 5G Communications

In this paper, we report the results of a field measurement campaign carried out inside a pedestrian tunnel at 24 GHz in two conditions, namely, empty tunnel scenario and busy tunnel scenario with pedestrian movement. The experiment measures the fading effects of various groups of pedestrian crowds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.149934-149942
Hauptverfasser: Soo, Qi Ping, Lim, Soo Yong, Rusli, Nurhidayah, Chong, Ka Heng, Lim, David Wee Gin, Lim, Heng-Siong, Yun, Zhengqing, Iskander, Magdy F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report the results of a field measurement campaign carried out inside a pedestrian tunnel at 24 GHz in two conditions, namely, empty tunnel scenario and busy tunnel scenario with pedestrian movement. The experiment measures the fading effects of various groups of pedestrian crowds using directional antennas at the transmitter and receiver for millimeter-wave radio communications. Having presented and analyzed the measurement data in several diverse scenarios, we have further investigated human scattering effects in the crowded pedestrian tunnel and performed ray-tracing simulation for an empty pedestrian tunnel condition. Because tunnel is an enveloped scenario that is not bound by any geographic areas, the results of this study can be applied to a wider scenario like other pedestrian tunnels across the globe. Above all, these findings contribute towards ensuring wireless connectivity for everyone even in a remote scenario like underground passages.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3125710