Numerical spectra of the Laplacian for line bundles on Calabi-Yau hypersurfaces

A bstract We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued ( p , q )-forms on Kähler ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-07, Vol.2023 (7), p.164-49, Article 164
Hauptverfasser: Ashmore, A., He, Y-H., Heyes, E., Ovrut, B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued ( p , q )-forms on Kähler manifolds. We restrict our attention to line bundles over complex projective space and Calabi-Yau hypersurfaces therein. We give three examples. For two of these, ℙ 3 and a Calabi-Yau one-fold (a torus), we compare our numerics with exact results available in the literature and find complete agreement. For the third example, the Fermat quintic three-fold, there are no known analytic results, so our numerical calculations are the first of their kind. The resulting spectra pass a number of non-trivial checks that arise from Serre duality and the Hodge decomposition. The outputs of our algorithm include all the ingredients one needs to compute physical Yukawa couplings in string compactifications.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2023)164