Effect of Temperature on Energy Budgets in Triploid Turbot Juveniles, Scophthalmus maximus
The investigation of fish bioenergetics primarily relies on using an energy budget equation to examine how the allocation of energy and nutrients in their diet impacts their growth rate and reproductive capabilities. By accurately forecasting the distribution of feeding intake energy towards growth,...
Gespeichert in:
Veröffentlicht in: | Yuye kexue jinzhan 2024-10, Vol.45 (5), p.53-63 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The investigation of fish bioenergetics primarily relies on using an energy budget equation to examine how the allocation of energy and nutrients in their diet impacts their growth rate and reproductive capabilities. By accurately forecasting the distribution of feeding intake energy towards growth, fecal excretion, and metabolism within the overall energetic framework of a fish, and considering diverse physiological factors or ecological influences that affect each aspect of this energetic balance sheet, scientific discoveries derived from these studies can provide valuable insights for making informed decisions regarding optimal dietary choices to enhance fish well-being. Additionally, it aids in refining rearing management strategies leading to improved feed utilization efficiencies, ultimately resulting in more sustainable aquaculture practices aimed at minimizing environmental pollution caused by excessive feeding activities. Temperature affects various physiological processes and growth potential, thereby, influencing feed requirements and utilization efficiency, which ultimately determine the allocation of feeding intake energy among growth, fecal, excretory, and metabolic energies. Extensive studies have been conducted to explore how temperature influences fish growth rates along with their overall energy budgets. The effects of temperature on the growth and energy budgets in triploid turbot, Scophthalmus maximus, were investigated in this study by establishing a series of five temperature gradients (13 ℃, 16 ℃, 19 ℃, 22 ℃, and 25 ℃). Measurements of the growth and energy budget allocations were conducted on large-sized triploid turbot juveniles with mean body weight of (120.24±17.20) g at the aforementioned temperatures for 49 d. The results indicate that under conditions of salinity 28.6, pH 7.8, dissolved oxygen content above 7.8 mg/L, light intensity of 300 lx, and a light period of 16 L∶8 D ratio; the feeding rates (FR) and weight gain rates (WG) of triploid juveniles initially increased with increasing temperature before declining, with the peak FR of (1.02±0.06)% and (0.95±0.04)% observed at 19 ℃ and 22 ℃, respectively, whereas the highest WG was recorded at 19 ℃ (62.17±3.10)% (P < 0.05). The relationship between specific growth rate (SGR) or feed conversion efficiency (FCE) and temperature, calculated based on different parameters including wet weight (SGRw and FCEw), dry weight (SGRd and FCEd), protein content (SGRp and FCEp), and energy c |
---|---|
ISSN: | 2095-9869 |
DOI: | 10.19663/j.issn2095-9869.20231113001 |