A MODULI STACK OF TROPICAL CURVES

We contribute to the foundations of tropical geometry with a view toward formulating tropical moduli problems, and with the moduli space of curves as our main example. We propose a moduli functor for the moduli space of curves and show that it is representable by a geometric stack over the category...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2020, Vol.8, Article e23
Hauptverfasser: CAVALIERI, RENZO, CHAN, MELODY, ULIRSCH, MARTIN, WISE, JONATHAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We contribute to the foundations of tropical geometry with a view toward formulating tropical moduli problems, and with the moduli space of curves as our main example. We propose a moduli functor for the moduli space of curves and show that it is representable by a geometric stack over the category of rational polyhedral cones. In this framework, the natural forgetful morphisms between moduli spaces of curves with marked points function as universal curves. Our approach to tropical geometry permits tropical moduli problems—moduli of curves or otherwise—to be extended to logarithmic schemes. We use this to construct a smooth tropicalization morphism from the moduli space of algebraic curves to the moduli space of tropical curves, and we show that this morphism commutes with all of the tautological morphisms.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2020.16