The Role of Saccharomyces cerevisiae Yeast and Lactic Acid Bacteria in the Formation of 2-Propanol from Acetone during Fermentation of Rye Mashes Obtained Using Thermal-Pressure Method of Starch Liberation
This study set out to assess the acetone content in rye sweet mashes prepared using the thermal-pressure method of starch liberation, and to investigate the formation of 2-propanol during the fermentation process. In the first set of experiments, we evaluated the correlation between the color and th...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2019-02, Vol.24 (3), p.610 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study set out to assess the acetone content in rye sweet mashes prepared using the thermal-pressure method of starch liberation, and to investigate the formation of 2-propanol during the fermentation process. In the first set of experiments, we evaluated the correlation between the color and the content of acetone and furfural in industrially produced sweet mashes (
= 37). The L * value was negatively correlated with the content of both acetone and furfural, while chromatic parameters a * and b * and the yellowness index (YI) had strong positive correlations with acetone (r > 0.9) and furfural (r > 0.8 for a * and r > 0.9 for b * and YI). In the second set of experiments, we assessed the concentration of acetone and 2-propanol in distillery rye mashes, fermented by
yeast and lactic acid bacteria. The influence of fermentation temperature on the formation of 2-propanol was also evaluated. The presence of 2-propanol in the post-fermentation media was confirmed, while a decrease in acetone content was observed. Fermentation temperature (27 °C or 35 °C) was found to have a significant effect on the concentration of 2-propanol in trials inoculated with lactic bacteria. The content of 2-propanol was more than 11 times higher in trials fermented at the higher temperature. In the case of yeast-fermented mashes, the temperature did not affect 2-propanol content. The acetone in the sweet mash was assumed to be a precursor of 2-propanol, which was found in the fermented mashes. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24030610 |