High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier

High-energy phase-stable sub-cycle mid-infrared pulses can provide unique opportunities to explore phase-sensitive strong-field light–matter interactions in atoms, molecules and solids. At the mid-infrared wavelength, the Keldysh parameter could be much smaller than unity even at relatively modest l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-07, Vol.8 (1), p.141-9, Article 141
Hauptverfasser: Liang, Houkun, Krogen, Peter, Wang, Zhou, Park, Hyunwook, Kroh, Tobias, Zawilski, Kevin, Schunemann, Peter, Moses, Jeffrey, DiMauro, Louis F., Kärtner, Franz X., Hong, Kyung-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-energy phase-stable sub-cycle mid-infrared pulses can provide unique opportunities to explore phase-sensitive strong-field light–matter interactions in atoms, molecules and solids. At the mid-infrared wavelength, the Keldysh parameter could be much smaller than unity even at relatively modest laser intensities, enabling the study of the strong-field sub-cycle electron dynamics in solids without damage. Here we report a high-energy sub-cycle pulse synthesiser based on a mid-infrared optical parametric amplifier and its application to high-harmonic generation in solids. The signal and idler combined spectrum spans from 2.5 to 9.0 µm. We coherently synthesise the passively carrier-envelope phase-stable signal and idler pulses to generate 33 μJ, 0.88-cycle, multi-gigawatt pulses centred at ~4.2 μm, which is further energy scalable. The mid-infrared sub-cycle pulse is used for driving high-harmonic generation in thin silicon samples, producing harmonics up to ~19th order with a continuous spectral coverage due to the isolated emission by the sub-cycle driver. Stable sub-cycle pulses in the mid-infrared region allow damage-free investigation of electron dynamics in solids. Here, the authors develop a suitable source to this end which is based on an optical parametric amplifier.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-00193-4