Recent Advances in High-βN Experiments and Magnetohydrodynamic Instabilities with Hybrid Scenarios in the HL-2A Tokamak
[Display omitted] Over the past several years, high-βN experiments have been carried out on HL-2A. The high-βN is realized using double transport barriers (DTBs) with hybrid scenarios. A stationary high-βN (>2) scenario was obtained by pure neutral-beam injection (NBI) heating. Transient high per...
Gespeichert in:
Veröffentlicht in: | Fundamental research (Beijing) 2022-09, Vol.2 (5), p.667-673 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Over the past several years, high-βN experiments have been carried out on HL-2A. The high-βN is realized using double transport barriers (DTBs) with hybrid scenarios. A stationary high-βN (>2) scenario was obtained by pure neutral-beam injection (NBI) heating. Transient high performance was also achieved, corresponding to βN≥3, ne/neG∼0.6, H98∼1.5, fbs∼30%, q95∼4.0, and G∼0.4. The high-βN scenario was successfully modeled using integrated simulation codes, that is, the one modeling framework for integrated tasks (OMFIT). In high-βN plasmas, magnetohydrodynamic (MHD) instabilities are abundant, including low-frequency global MHD oscillation with n = 1, high-frequency coherent mode (HCM) at the edge, and neoclassical tearing mode (NTM) and Alfvénic modes in the core. In some high-βN discharges, it is observed that the NTMs with m/n=3/2 limit the growth of the plasma energy and decrease βN. The low-n global MHD oscillation is consistent with the coupling of destabilized internal (m/n = 1/1) and external (m/n = 3/1 or 4/1) modes, and plays a crucial role in triggering the onset of ELMs. Achieving high-βN on HL-2A suggests that core-edge interplay is key to the plasma confinement enhancement mechanism. Experiments to enhance βN will contribute to future plasma operation, such as international thermonuclear experimental reactor . |
---|---|
ISSN: | 2667-3258 2096-9457 2667-3258 |
DOI: | 10.1016/j.fmre.2021.12.011 |