Deep learning for symmetry classification using sparse 3D electron density data for inorganic compounds

We report a novel deep learning (DL) method for classifying inorganic compounds using 3D electron density data. We transform Density Functional Theory (DFT)-derived CHGCAR files from the Materials Project (MP) and experimental data from the Inorganic Crystal Structure Database (ICSD) into point clou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2024-09, Vol.10 (1), p.211-12, Article 211
Hauptverfasser: Kim, Seonghwan, Lee, Byung Do, Cho, Min Young, Pyo, Myoungho, Lee, Young-Kook, Park, Woon Bae, Sohn, Kee-Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a novel deep learning (DL) method for classifying inorganic compounds using 3D electron density data. We transform Density Functional Theory (DFT)-derived CHGCAR files from the Materials Project (MP) and experimental data from the Inorganic Crystal Structure Database (ICSD) into point clouds and sparse tensors, optimized for use in DL models such as PointNet and Sparse 3D CNN. This approach effectively overcomes the limitations of handling the dense 3D data, a common challenge in DL. Contrasting with traditional 1D or 2D X-ray diffraction (XRD) patterns that necessitate complex reciprocal space analysis, our method utilizes 3D density data for direct interpretation in real lattice space. This shift significantly enhances classification accuracy, outperforming traditional XRD-driven DL methods. We achieve accuracies of 97.28%, 90.77%, and 90.10% for crystal system, extinction group, and space group classifications, respectively. Our 3D electron density-based DL approach not only showcases improved accuracy but also contributes a more intuitive and effective framework for materials discovery.
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-024-01402-7