A Fast Sparse Coding Method for Image Classification

Image classification is an important problem in computer vision. The sparse coding spatial pyramid matching (ScSPM) framework is widely used in this field. However, the sparse coding cannot effectively handle very large training sets because of its high computational complexity, and ignoring the mut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-02, Vol.9 (3), p.505
Hauptverfasser: Zang, Mujun, Wen, Dunwei, Liu, Tong, Zou, Hailin, Liu, Chanjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image classification is an important problem in computer vision. The sparse coding spatial pyramid matching (ScSPM) framework is widely used in this field. However, the sparse coding cannot effectively handle very large training sets because of its high computational complexity, and ignoring the mutual dependence among local features results in highly variable sparse codes even for similar features. To overcome the shortcomings of previous sparse coding algorithm, we present an image classification method, which replaces the sparse dictionary with a stable dictionary learned via low computational complexity clustering, more specifically, a k-medoids cluster method optimized by k-means++. The proposed method can reduce the learning complexity and improve the feature’s stability. In the experiments, we compared the effectiveness of our method with the existing ScSPM method and its improved versions. We evaluated our approach on two diverse datasets: Caltech-101 and UIUC-Sports. The results show that our method can increase the accuracy of spatial pyramid matching, which suggests that our method is capable of improving performance of sparse coding features.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9030505