Protective effects of the exogenous application of salicylic acid and chitosan on chromium-induced photosynthetic capacity and osmotic adjustment in Aconitum napellus

Chitosan (CTS) is recognized for enhancing a plant's resilience to various environmental stresses, such as salinity and drought. Moreover, salicylic acid (SA) is acknowledged as a growth regulator involved in addressing metal toxicity. However, the effectiveness of both compounds in mitigating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2024-10, Vol.24 (1), p.933-17, Article 933
Hauptverfasser: Ramzan, Musarrat, Javed, Tayyaba, Hassan, Ariba, Ahmed, Muhammad Zaheer, Ashraf, Hina, Shah, Anis Ali, Iftikhar, Muhammad, El-Sheikh, Mohamed A, Raja, Vaseem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chitosan (CTS) is recognized for enhancing a plant's resilience to various environmental stresses, such as salinity and drought. Moreover, salicylic acid (SA) is acknowledged as a growth regulator involved in addressing metal toxicity. However, the effectiveness of both compounds in mitigating Cr-induced stress has remained relatively unexplored, especially in the case of Aconitum napellus, a medicinally and floricultural important plant. Therefore, the primary objective of this study was to investigate the potential of CTS and SA in alleviating chromium (Cr)-induced stress in A. napellus. To address these research questions, we conducted a controlled experiment using potted plants to evaluate the individual and combined impacts of CTS and SA on plants exposed to Cr stress. Foliar application of CTS (0.4 g/L) or SA (0.25 mmol/L) led to significant improvements in the growth, chlorophyll content, fluorescence, and photosynthetic traits of A. napellus plants under Cr stress. The most notable effects were observed with the combined application of CTS and SA, resulting in increases in various morphological parameters, such as shoot length (2.89% and 7.02%) and root length (27.75% and 3.36%) under the Cr 1 and Cr 2 treatments, respectively. Additionally, several physiological parameters, such as chlorophyll a (762.5% and 145.56%), chlorophyll b (762.5% and 145.56%), carotenoid (17.03% and 28.57%), and anthocyanin (112.01% and 47.96%) contents, were notably improved under the Cr 1 and Cr 2 treatments, respectively. Moreover, the combined treatment of CTS and SA improved the fluorescence parameters while decreasing the levels of enzymatic antioxidants such as catalase (27.59% and 43.79%, respectively). The application also notably increased osmoprotectant parameters, such as the total protein content (54.11% and 20.07%) and the total soluble sugar content (78.17% and 49.82%) in the leaves of A. napellus in the Cr 1 and 2 treatments, respectively. In summary, these results strongly suggest that the simultaneous use of exogenous CTS and SA is an effective strategy for alleviating the detrimental effects of Cr stress on A. napellus. This integrated approach opens promising avenues for further exploration and potential implementation within agricultural production systems.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-024-05634-z