Fractional Fokker-Planck Equation

We shall discuss the numerical solution of the Cauchy problem for the fully fractional Fokker-Planck (fFP) equation in connection with Sinc convolution methods. The numerical approximation is based on Caputo and Riesz-Feller fractional derivatives. The use of the transfer function in Laplace and Fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2017-03, Vol.5 (1), p.12
Hauptverfasser: Baumann, Gerd, Stenger, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We shall discuss the numerical solution of the Cauchy problem for the fully fractional Fokker-Planck (fFP) equation in connection with Sinc convolution methods. The numerical approximation is based on Caputo and Riesz-Feller fractional derivatives. The use of the transfer function in Laplace and Fourier spaces in connection with Sinc convolutions allow to find exponentially converging computing schemes. Examples using different initial conditions demonstrate the effective computations with a small number of grid points on an infinite spatial domain.
ISSN:2227-7390
2227-7390
DOI:10.3390/math5010012