Integrating FRAM and BN for enhanced resilience evaluation in construction emergency response: A scaffold collapse case study
The construction system's complexity can generate substantial uncertainties during emergencies. Resilience, as a new perspective on emergency response, can significantly mitigate these challenges. This paper introduces an innovative model to assess the resilience of construction emergency respo...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-02, Vol.10 (3), p.e25342, Article e25342 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The construction system's complexity can generate substantial uncertainties during emergencies. Resilience, as a new perspective on emergency response, can significantly mitigate these challenges. This paper introduces an innovative model to assess the resilience of construction emergency response processes utilizing a scaffold collapse scenario as a demonstrative case study. Grounded in resilience engineering, our model integrates the merits of the Functional Resonance Analysis Method (FRAM) with the probabilistic strengths of Bayesian Networks (BNs). The process commences with FRAM, mapping out the emergency response in qualitative terms by identifying functions, variabilities, and couplings. This culminates in a topological network which serves as a foundational structure for the directed Complex Network (CN) and the BN model. Thereafter, the Delphi method and the modified K-shell (MKS) decomposition algorithm guide the computation of prior probabilities for root nodes and the conditional probability table within the BN model. Subsequently, the BN model is subjected to a simulation using the AgenaRisk software, executing both forward and backward propagation as well as sensitivity analyses. Our findings pinpoint “Intersectoral Coordination and Linkage” as the most crucial function, with rapidity being the most sensitive aspect influencing resilience during a scaffold collapse emergency response process. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e25342 |