Phonon-induced decoherence in color-center qubits

Electron spin states of solid-state defects such as nitrogen- and silicon-vacancy in diamond are a leading quantum-memory candidate for quantum communications and computing. Via open-quantum-systems modeling of spin-phonon coupling—the major contributor of decoherence—at a given temperature, we deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2024-01, Vol.6 (1), p.013055, Article 013055
Hauptverfasser: Dhara, Prajit, Guha, Saikat
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron spin states of solid-state defects such as nitrogen- and silicon-vacancy in diamond are a leading quantum-memory candidate for quantum communications and computing. Via open-quantum-systems modeling of spin-phonon coupling—the major contributor of decoherence—at a given temperature, we derive the time dynamics of the density operator of an electron-spin qubit. We use our model to corroborate experimentally measured decoherence rates. We further derive the temporal decay of distillable entanglement in spin-spin entangled states heralded via photonic Bell-state measurements. Extensions of our model to include other decoherence mechanisms, e.g., undesired hyperfine couplings to the neighboring nuclear-spin environment, will pave the way to a rigorous predictive model for engineering artificial-atom qubits with desirable properties.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.6.013055