Transition Metal-(μ-Cl)-Aluminum Bonding in α-Olefin and Diene Chemistry
Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M−(μ-Cl)−Al bonding, being proven for certain >C=C< functionalization reactions, rem...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-10, Vol.27 (21), p.7164 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M−(μ-Cl)−Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M−(μ-Cl)−Al bonding in Ziegler−Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M−(μ-Cl)−Al species into catalytic cycles. In the present review, we have compiled data on the formation of M−(μ-Cl)−Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler−Natta processes and beyond. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27217164 |